- Ürün Özellikleri
- Ödeme Seçenekleri
- Yorumlar
- Kaynakça
-
-
Kredi Kartı Tek Ödeme:465 TLHavale:465 TL
-
-
@@ pdf sayfa sayısı 29 @@
*[1] Hamilton, W.R. Elements of Quaternions, New York: Chelsea Publishing, 1969.
*[2] Ward, J.P. Quaternions and Cayley Numbers, London: Kluwer, 1996.
*[3] Carmody, K. Circular and hyperbolic quaternions, octonions, and sedenions, Applied Mathematics and Computation, Vol 28, Issue 1, Pages 47-72, 1988.
*[4] Musès, C. Applied Hypernumbers: Computational Concepts, Applied Mathematics and Computation, Vol. 3, Issue 3, Pages 211-226, 1977.
*[5] Majernik, V. Quaternionic Formulation of the Classical Fields, Advances in Applied Clifford Algebras, Vol. 9, Issue 1, Pages 119-130, 1999.
*[6] Rawat, A.S., Negi, O.P.S. Quaternion Gravi-electromagnetism, International Journal of Theoretical Physics, Vol. 51, Issue 3, Pages 738-745, 2012.
*[7] Davies, A.J. Quaternionic Dirac Equation, Physical Review D, Vol. 41, Issue 8, Pages 2628-2630, 1990.
*[8] Demir, S., Tanışlı, M. Biquaternionic Proca-type Generalization of Gravity, The European Physical Journal Plus, Vol. 126, Issue 5, Pages 1-7, Number 51, 2011.
*[9] Demir, S., Tanışlı, M. Complex Quaternionic Reformulation of the Relativistic Elastic Collision Problem, Physica Scripta, Vol. 75, Issue 5, Pages 630-637, 2007.
*[10] Demir, S., Tanışlı, M., Candemir, N. Hyperbolic Quaternion Formulation of Electromagnetism, Advances in Applied Clifford Algebras, Vol. 20, Pages 547-563, 2010.
*[11] Demir, S., Tanışlı, M., Şahin, N, Kansu, M.E. Biquaternionic Reformulation of Multifluid Plasma Equations, Chinese Journal of Physics, Vol. 55, Issue 4, Pages 1329-1339, 2017.
*[12] Demir, S., Özdaş, K. Dual Quaternionic Reformulation of Classical Electromagnetism, Acta Physica Slovaca, Vol. 53, Issue 6, Pages 429-436, 2003.
*[13] Aymaz, I., Kansu, M.E. Dual-complex Quaternion Representation of Gravitoelectromagnetism, International Journal of Geometric Methods in Modern Physics, Vol. 18, Issue 11, Pages1-21, Number 2150178, 2021.
*[14] Demir, S. Kuaternionların Dinamiğe Uygulanması, M.Sc. Thesis, Anadolu University, Eskişehir, 1999, Pages 71.
*[15] Tosunoğlu, E. Dönme Hareketine Yüksek Boyutlu Cebirlerle Farklı Bir Yaklaşım, M.Sc. Thesis, Kütahya Dumlupınar University, Kütahya, 2022, Pages 127.
*[16] Altınok, A. Reel Kuaternion Matrisleri ve Dönme Dönüşümü, M. Sc. Thesis, Harran University, Şanlıurfa, 2019, Pages 72.
*[17] Brenner, J. L. Matrices of Quaternions, Pacific Journal of Mathematics, Vol. 1, Issue 3, Pages 329-335, 1951.
*[18] Demir, S. Matrix Realization of Dual Quaternionic Electromagnetism, Central European Journal of Physics, Vol. 5, Issue 4, Pages 487-506, 2007.
*[19] Liping, H. Consimilarity of Quaternion Matrices and Complex Matrices, Linear Algebra and its Applications, Vol. 3331, Issue 1-3, Pages 21-30, 2001.
*[20] Ünal, T. Kuaterniyonlar ve Kuaterniyon Matrisleri, M.Sc. Thesis, Kütahya Dumlupınar University, Kütahya, 2011, Pages 62.
@@ pdf sayfa sayısı 46 @@
*[1] Ataca, C.; Cahangirov, S.; Durgun, E.; Jang, Y.-R.; Ciraci, S. Phys. Rev. B 2008, 77, 214413.
*[2] Li, Y.; Zhou, Z.; Zhang, S.; Chen, Z. Journal of the American Chemical Society 2008, 130, 16739–16744, PMID: 19007118.
*[3] Terrones, M.; Botello-Mendez, A. R.; Campos-Delgado, J.; Lopez-Urias, F.; Vega- Cantu, Y. I.; Rodriguez-Macias, F. J.; Elias, A. L.; Munoz-Sandoval, E.; Cano- Marquez, A. G.; Charlier, J.-C.; Terrones, H. Nano Today 2010, 5, 351 – 372.
*[4] Qu, L.-H.; Zhang, J.-M.; Xu, K.-W.; Ji, V. Physica E: Low-dimensional Systems and Nanostructures 2014, 56, 55 – 58.
*[5] Liu, D.; Lin, X.; Tom´anek, D. Nano Letters 2018, 18, 4908–4913, PMID: 30020790.
*[6] Carbon nanotubes: synthesis, structure, properties and applications; Springer.
*[7] Durgun, E.; Senger, R. T.; Mehrez, H.; Dag, S.; Ciraci, S. Europhysics Letters (EPL) 2006, 73, 642–648.
*[8] Tongay, S.; Dag, S.; Durgun, E.; Senger, R. T.; Ciraci, S. Journal of Physics: Condensed Matter 2005, 17, 3823–3836.
*[9] Ersan, F.; Aktürk, E.; Ciraci, S. Phys. Chem. Chem. Phys. 2019, 21, 14832–14845.
*[10] Aierken, Y.; Leenaerts, O.; Peeters, F. m. c. M. Phys. Rev. B 2018, 97, 235436.
*[11] Byun, Y.; Cho, M.; Kim, D.; Jung, Y.; Coskun, A. Macromolecules 2017, 50, 523–533.
*[12] Cresti, A.; Lopez-Bezanilla, A.; Ordej´on, P.; Roche, S. ACS Nano 2011, 5, 9271–9277, PMID: 21985521.
*[13] Lv, Y.; Liu, Y.; Qin, W.; Chang, S.; Jiang, C.; Liu, Y.; Liao, L. IEEE Transactions on Electron Devices 2019, 66, 2365–2369.
*[14] Liang, Z.; Wang, Y.; Hua, C.; Xiao, C.; Chen, M.; Jiang, Z.; Tai, R.; Lu, Y.; Song, F. Nanoscale 2019, 11, 14134-14140.
*[15] Churchill, H. O. H.; Salamo, G. J.; Yu, S.-Q.; Hironaka, T.; Hu, X.; Stacy, J.; Shih, I. Nanoscale Research Letters 2017, 12, 488.
*[16] Yi, S.; Zhu, Z.; Cai, X.; Jia, Y.; Cho, J.-H. Inorganic Chemistry 2018, 57, 5083–5088, PMID: 29697976.
*[17] Kresse, G.; Furthmuller, J. Phys. Rev. B 1996, 54, 11169–11186.
*[18] Blöchl, P. E. Phys. Rev. B 1994, 50, 17953–17979.
*[19] Grimme, S. Journal of Computational Chemistry 2006, 27, 1787–1799.
*[20] Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865–3868.
*[21] Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188–5192.
*[22] Bader, R. F. W. Encyclopedia of Computational Chemistry; American Cancer Society, 2002.
*[23] Henkelman, G.; Arnaldsson, A.; Jo´nsson, H. Computational Materials Science 2006, 36, 354–360.
*[24] Momma, K.; Izumi, F. Journal of Applied Crystallography 2011, 44, 1272–1276.
*[25] Mantina, M.; Chamberlin, A. C.; Valero, R.; Cramer, C. J.; Truhlar, D. G. The Journal of Physical Chemistry A 2009, 113, 5806–5812, PMID: 19382751.
*[26] Zhu, Z.; Cai, X.; Yi, S.; Chen, J.; Dai, Y.; Niu, C.; Guo, Z.; Xie, M.; Liu, F.; Cho, J.-H.; Jia, Y.; Zhang, Z. Phys. Rev. Lett. 2017, 119, 106101.
*[27] Liu, D.; Lin, X.; Tomanek, D. Nano Lett. 2018, 18(8), 4908–4913.
@@ pdf sayfa sayısı 54 @@
*[1] Cavanaugh, M.K., Birbilis, N., Buchheit, R.G., Bovard, F. Investigating localized corrosion susceptibility arising from Sc containing intermetallic Al3 Sc in high strength Al-alloys. Scripta Materialia, 56(11), 995–998, 2007.
*[2] Callister, W.D. ve Rethwisch, D.G. Malzeme Bilimi ve Mühendisliği (K. Genel Çev. Ed.). Ankara: Nobel Academic Publishing, 2014.
*[3] Hu, W. C. Mechanical and thermodynamic properties of Al3Sc and Al3Li precipitates in Al–Li–Sc Alloys from first-principles calculations. Physica B: Condensed Matter, 427, 85–90, 2013.
*[4] Hussain, A., Choudhry, M. A., and Hayat, S. S. Effects of Ordering on the Thermal Properties of an Ni3 Al Intermetallic Alloy System: a Molecular Dynamics Approach. Chinese Journal of Physics, 47(3), 344-354, 2009.
*[5] Mao P., Yu, B., Liu, Z., Wang, F., Ju, Y. First-principles calculations of structural, elastic and electronic properties of AB2 type intermetallics in Mg-Zn-Ca-Cu alloy. Journal of Magnesium and Alloys, 1(3), 256–262, 2013.
*[6] Norman, A., Prangnell, P., & McEwen, R.. The solidification behaviour of dilute Aluminium–Scandium alloys. Acta Materialia, 46(16), 5715–5732, 1998.
*[7] Phillips, M. A., Clemens, B. M., & Nix, W. D. Microstructure and nanoindentation hardness of Al/Al3 Sc multilayers. Acta Materialia, 51(11), 3171–3184, 2003.
*[8] Røyset, J., & Ryum, N. Scandium in aluminium alloys. International Materials Reviews, 50(1), 19–44, 2005.
*[9] Shevchenko, M. O., Kudin, V. G., Berezutskii, V. V., Ivanov M. I., Sudavtsova V. S. Thermodynamic Properties of Al–Sc Alloys. Powder Metallurgy and Metal Ceramics, 53(3-4), 243–249, 2014.
*[10] L S Toropova, Advanced Aluminum Alloys Containing Scandium, Structure and Properties, Taylor & Francis, 2017.
*[11] Xu, P., vd. Precipitation characteristics and morphological transitions of Al3 Sc precipitates. Journal of Alloys and Compounds, 790, 509–516, 2019.
*[12] Zhang, W.G., Ye, Y.C., He, L.J., Li, P.J., Feng, X., Novikov, L.S. Dynamic response and microstructure control of Al–Sc binary alloy under high-speed impact. Materials Science and Engineering: A, 578, 35–45, 2013.
@@ pdf sayfa sayısı 60,61 @@
*[1] Mehra, R., Bala, P. Assessment of radiation hazards due to the concentration of natural radionuclides in the environment. Environ Earth Sci 71, 901–909, 2014, doi:10.1007/s12665-013-2493-x
*[2] UNSCEAR, 2000. Sources and effects of ionizing radiation. ANNEX B: Exposures from natural radiation sources. UNSCEAR Report; 2000:97-99
*[3] Mlwilo, N.A., Mohammed, N.K. and. Spyrou, N.M. Radioactivity levels of staple foodstuffs and dose estimates for most of the Tanzanian population. J. Radiol. Prot. 27, 471, 2007, doi:10.1088/ 0952-4746/27/4/008.
*[4] Amin, R.M and Ahmed, F. Estimation of annual effective dose to the adult Egyptian population due to natural radioactive elements in ingestion of spices. App. Sci. Res. 4, 350, 2013.
*[5] Tawalbeh A., Abumurad, K.M, Samat, S.B. and Yasir, M.S. A study of natural radionuclide activities and radiation hazard index in some grains consumed in Jordan. J. Analyt. Sci. 15, 61, 2011.
*[6] Çınar, İ. Meyve ve Sebzelerin Kurutulması. Akademik Gıda, 4 (3), 32-34, 2006, Retrieved from https://dergipark.org.tr/tr/pub/akademik-gida/issue/55843/764902
*[7] Soysal, Y. Microwave Drying Characteristics of Parsley, Biosystems Engineering, 89:167-173, 2004
*[8] Kutlu N, İşçi A ve Demirkol ÖŞ Gıdalarda İnce Tabaka Kurutma Modelleri. The Journal of Food, 40(1):39-46, 2015
*[9] C. Kansaana, E.O. Darko, O.K. Adukpo, A. Faanu, E. Shitsi, N.S. Opata and L. Tettey-Larbi, Internat. J. Food Sci. Nutr. Diet. 75, 75-80, 2013
*[10] Harb, S. Natural Radiospecific activity and Annual Effective Dose in Selected Vegetables and Fruits. Journal of Nuclear and Particle Physics, 5(3), 70-73, 2015.
*[11] Cumhur Canbazoglu and Mahmut Dogru, A preliminary study on 226Ra, 232Th, 40K and 137Cs specific activity in vegetables and fruits frequently consumed by inhabitants of Elazıg Region, Turkey. J Radioanal Nucl Chem, 295(2), 1245-1249, 2013, doi: 10.1007/s10967- 012-1995-4
*[12] Abojassim, A., Hady, H., & Mohammed, Z. Natural Radioactivity Levels in Some Vegetables and Fruits Commonly Used in Najaf Governorate, Iraq. Journal of Bioenergy and Food Science, 3(3) 113- 123, 2016. doi:10.18067/jbfs.v3i3.108.
*[13] Bolca, M., Saç, M.M., Çokuysal, B., Karalı, T., and Ekdal E. Radioactivity in soils and various foodstuffs from the Gediz River Basin of Turkey. Radiation Measurements 42, 263 – 270, 2007
*[14] Abiama, P. E., Ben-Bolie, G. H., Amechmachi, N., Najib, F., El Khoukhi, T., & Ateba, P.O. Annual intakes of 226Ra, 228Ra and 40K in staple foodstuffs from a high background radiation area in the southwest region of Cameroon. Journal of Environmental Radioactivity, 110, 59–63, 2012.
*[15] http://www.gaziantep.gov.tr/ilimiz-gaziantep Erişim tarihi: 28 Temmuz 2022
*[16] https://www.gaziantep.bel.tr/tr/gaziantepi-kesfet/fiziki-yapi Erişim tarihi: 28 Temmuz 2022
*[17] Tawfic A.F., Zakaly H.M.H., Awad H.A., Tantawy H.R, Abbasi A., Abed N.S. and Mostafa M., Natural radioactivity levels and radiological implications in the high natural radiation area of Wadi El Reddah, Egypt. J. Radioanal. Nucl. Chem. 327, 643, 2021, doi:10.1007/s10967-020-07554-2.
*[18] C. Canbazoğlu, Ş. Turhan, S. Bakkal, F.A. Uğur, E. Gören, Analysis of gamma emitting radionuclides (terrestrial and anthropogenic) in soil samples from Kilis province in south Anatolia, Turkey, Annals of Nuclear Energy, 62, 153-157, 2013, doi:10.1016/j. anucene.2013.05.040.
*[19] Cengiz G.B. Transfer factors of 226Ra, 232Th and 40K from soil to pasture-grass in the northeastern of Turkey. J Radioanal Nucl Chem. 319:83–89, 2019.
*[20] Hamby, D. M., Tynybekov, A.K. Uranium, thorium and potassium in soils along the shore of lake Issyk-Kyol in the Kyrghyz Republic, Environ. Monitoring Assessment, 73, 101–108, 2000.
*[21] Altamemi, Raghda A. A., Turhan, Ş. and Kurnaz, A. Natural and anthropogenic radioactivity in some vegetables and fruits commonly consumed in the Western Black Sea region of Turkey. Radiochimica Acta, 109(12), 935-942, 2021, doi:10.1515/ract-2021-1100
*[22] Islam A., Begum, A., Yeasmin, S., & Sultana, M.S. Assessment of dose due to natural radio-nuclides in vegetables of high background radiation area in south-eastern part of Bangladesh. Iranian Journal of Radiation Research, 12, 271-275, 2014.
@@ pdf sayfa sayısı 68 @@
*[1] Dinnebier, R. E., Billinge S. J. L. Powder Diffraction Theory and Practice. Cambridge: RSC Publishing, 2008.
*[2] He, K., Chen, N., Wang, C., Wei, L., Chen, J., Method for Determining Crystal Grain Size by X-Ray Diffraction. Crystal Research and Technology, 53(2), 1700157, 2018.
*[3] Kırındı T., Sarı U., The Effects Of Austenite Phase Deformation On Microstructure And Magnetic Properties İn Fe–13.4%Mn–5.2%Mo Alloy, Journal Material Science 46:6378–6383, 2011.
*[4] Monshi, A., Foroughi, M. R. ve Monshi, M. R. Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD. World Journal of Nano Science and Engineering, 2, 154-160, 2012.
*[5] Ocak H. Y. Fe-%31,5Ni-%10Mn Alaşımında Austenite-Martensite faz dönüşümünün kristalografik, kinetik ve manyetik özellikleri, PhD thesis, Gazi University Institute of Science and Technology, 1999.
*[6] Patterson, A. L. The Scherrer Formula for I-Ray Particle Size Determination. Physical Review, 56, 978-981, 1939.
*[7] Sarı U., Kırındı T., Effect of Mn content on the austenite–martensite phases and magnetic properties in Fe–Mn–Co alloys, Materials Chemistry and Physics 130 738– 742, 2011.
*[8] Wan J., Chen S., Martensitic transformation and shape memory effect in Fe–Mn–Si based alloys, Current Opinion in Solid State and Materials Science 9 303–312, 2005.
*[9] Wang, H., Wang, H., Zhang, R., Liu, R., Xu, Y., Tang, R. Effect of high strain amplitude and pre-deformation on damping property of Fe-Mn alloy. Journal of Alloys and Compounds, 770, 252–256, 2019.
*[10] Waseda, Y., Matsubara, E., Shinoda, K. Diffraction from Polycrystalline Samples and Determination of Crystal Structure. X-Ray Diffraction Crystallography, 107–167, 2011.
*[11] Zheng W., Gren J., Lu X. G., He Y., Li A. L., Experimental Investigation And Computer Simulation of Diffusion in Fe-Mo And Fe-Mn-Mo Alloys with Different Optimization Methods, Metallurgical and Materials Transactions A, 536, Volume 48a, 2017.
@@ pdf sayfa sayısı 76 @@
*[1] Hubbell, J.H. and Seltzer, S.M. (2004), Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients (version 1.4). [Online] Available: http://physics.nist.gov/xaamdi [2022]. National Institute of Standards and Technology, Gaithersburg, MD.
*[2] Website: https://fluka.cern [accessed 2022].
*[3] Ahdida, C., Bozzato, D., Calzolari, D., et al. New Capabilities of the FLUKA Multi-Purpose Code, Frontiers in Physics 9, 788253, 2022.
*[4] Battistoni, G., Boehlen, T., Cerutti, F., et. al. Overview of the FLUKA code, Annals of Nuclear Energy 82, 10-18, 2015.
*[5] Vlachoudis, V., “FLAIR: A Powerful But User Friendly Graphical Interface For FLUKA”,in Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York, 2009.
*[6] Agostinelli, S. et al. Geant4—a simulation toolkit, Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip., 506(3), 250-303, 2003.
*[7] Arce, P., et al., “Gamos: A framework to do Geant4 simulations in different physics fields with an user-friendly interface,” Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., vol. 735, pp. 304–313, 2014.
*[8] Sood, A., The Monte Carlo Method and MCNP - A Brief Review of Our 40 Year History, Int. Topical Meeting on Industrial Radiation and Radioisotope Measurement - Aplications Conference, Chicago IL, July, LA-UR-17-26533, 2017.
*[9] PENELOPE 2018: A code system for Monte Carlo simulation of electron and photon transport. OECD 2019. https://doi.org/10.1787/32da5043-en
*[10] Yan, S., and Fang, Q., Hybrid mesh and voxel based Monte Carlo algorithm for accurate and efficient photon transport modeling in complex bio-tissues, Biomed. Opt. Express, 11(11), 6262–6270, 2020.
@@ pdf sayfa sayısı 85 @@
*[1] J. Schneider et al., “Understanding TiO2 photocatalysis: mechanisms and materials,” Chemical reviews, vol. 114, no. 19, pp. 9919-9986, 2014.
*[2] D. R. Kennedy, M. Ritchie, and J. Mackenzie, “The photosorption of oxygen and nitric oxide on titanium dioxide,” Transactions of the Faraday Society, vol. 54, pp. 119-129, 1958.
*[3] T. Barry and F. Stone, “The reactions of oxygen at dark and irradiated zinc oxide surfaces,” Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, vol. 255, no. 1280, pp. 124-144, 1960.
*[4] W. Doerffler and K. Hauffe, “Heterogeneous photocatalysis I. The influence of oxidizing and reducing gases on the electrical conductivity of dark and illuminated zinc oxide surfaces,” Journal of Catalysis, vol. 3, no. 2, pp. 156-170, 1964.
*[5] K. Kato and F. Masuo, “Liquid phase oxidation of tetralin over titanium oxide as a photocatalyst,” Kogyo Kagaku Zasshi, vol. 67, pp. 1136-44, 1964.
*[6] F. Steinbach, “Photosensitized oxidation of carbon monoxide on semi-conductors supported on silver,” Nature, vol. 215, no. 5097, pp. 152-153, 1967.
*[7] M. Formenti, F. Juillet, P. Meriaudeau, and S. Teichner, “Heterogeneous photocatalysis for partial oxidation of paraffins,” Chemical technology, no. NNOV, pp. 680-+, 1971.
*[8] K. Tanaka, Y. Fukui, N. Moritake, and H. Uchiki, “Chemical composition dependence of morphological and optical properties of Cu2ZnSnS4 thin films deposited by sol–gel sulfurization and Cu2ZnSnS4 thin film solar cell efficiency,” Solar Energy Materials and Solar Cells, vol. 95, no. 3, pp. 838-842, 2011.
*[9] H. Yoneyama, Y. Toyoguchi, and H. Tamura, “Reduction of methylene blue on illuminated titanium dioxide in methanolic and aqueous solutions,” The Journal of Physical Chemistry, vol. 76, no. 23, pp. 3460-3464, 1972.
*[10] R. Bickley and F. Stone, “Photoadsorption and photocatalysis at rutile surfaces: I. Photoadsorption of oxygen,” Journal of Catalysis, vol. 31, no. 3, pp. 389-397, 1973.
*[11] M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, “Environmental applications of semiconductor photocatalysis,” Chemical reviews, vol. 95, no. 1, pp. 69-96, 1995.
*[12] R. Chauhan, A. Kumar, and R. P. Chaudhary, “Structural and photocatalytic studies of Mn doped TiO2 nanoparticles,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 98, pp. 256-264, 2012.
*[13] L. Zhao, Y. Yu, L. Song, X. Hu, and A. Larbot, “Synthesis and characterization of nanostructured titania film for photocatalysis,” Applied surface science, vol. 239, no. 3-4, pp. 285-291, 2005.
*[14] C. S. Turchi and D. F. Ollis, “Photocatalytic degradation of organic water contaminants: mechanisms involving hydroxyl radical attack,” Journal of catalysis, vol. 122, no. 1, pp. 178-192, 1990.
@@ pdf sayfa sayısı 92 @@
*[1] Benzaid, D., et al. Bethe--Weizsäcker semiempirical mass formula coefficients 2019 update based on AME2016, Nucl. Sci. Tech., 31:9, 2020, https://doi.org/10.1007/s41365-019-0718-8
*[2] von Weizsacker, C.F., Zur theorie der kernmassen. Z. Phys. A Hadrons Nuclei 96, 431,1935, https://doi.org/10.1007/BF01337700
*[3] Meyerhof, W. E., Elements of nuclear physics. McGraw-Hill Book, 1967
*[4] Rohlf J. W., Modern Physics from α to Z0 , John Wiley & Sons, 1994
*[5] Royer, D., Gautier, C., Coefficients and terms of the liquid drop model and mass formula, Physical Review C, 73(6), 067302, 2006, https://doi.org/10.1103/PhysRevC.73.067302
*[6] Chowdhury, P. R. and Basu, D.N., Nuclear matter properties with the re-evaluated coefficients of liquid drop model, arXiv:nucl-th/0408013, 2006, https://doi.org/10.48550/ arXiv.nucl-th/0408013
*[7] Wang, N., et al., Modification of nuclear mass formula by considering isospin effect, Physical Review C, 81(4), 044322, 2010, https://doi.org/10.1103/PhysRevC.81.044322
*[8] Bhagwat, A., et al., Microscopic–Macroscopic Mass Calculations with Wigner–Kirkwood expansion, In Journal of Physics: Conference Series,Vol. 321, No. 1, p. 012053, 2011, https://doi.org/10.1088/1742-6596/321/1/012053
*[9] Basu, D.N. Neutron and proton drip lines using the modified Bethe–Weizsacker mass formula, Int. J. Mod. Phys. E 13,747–758, 2004, https://doi.org/10.1142/S0218301304002491
*[10] Chowdhury, P.R. et al., Modified Bethe–Weizsacker mass formula with isotonic shift and new driplines, Mod. Phys. Lett. A 20, 1605–1618, 2005, https://doi.org/10.1142/ S021773230501666X
*[11] https://www.nndc.bnl.gov/nudat3/ ( Last visited : 01/09/2022)
@@ pdf sayfa sayısı 99,100 @@
*[1] Niu SH. Safe work information note series. Radiation Protection of Workers. Geneva,Switzerland. International Labour Organization (ILO); 2011.
*[2] Herrmann TL, Fauber TL, Gill J, Hoffman C, Orth DK, Peterson PA, et al. Best practices in digital radiography. Radiol Technol 2012;84:83-9.
*[3] Briggs-Kamara MA, Okoye PC, Omubo-Pepple VB. Radiation safety awareness among patients and radiographers in three hospitals in Port Harcourt. Am J Sci Ind Res 2013;4:83-8.
*[4] Lautin EM, Novick MK, Jean-Baptiste R. Tailored CT: Primum non nocere. Br J Radiol 2008;81:442-3.
*[5] Stewart F, Akleyev A, Hauer-Jensen M, Hendry J, Kleiman N, Macvittie T, et al. ICRP publication 118: ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs-threshold doses for tissue reactions in a radiation protection context. Ann ICRP 2012;41:1-322.
*[6] Popanda O, Marquardt JU, Chang-Claude J, Schmezer P. Genetic variation in normal tissue toxicity induced by ionizing radiation. Mutat Res 2009;667:58-69.
*[7] The 2007 recommendations of the international commission on radiological protection: ICRP publication 103. Ann ICRP 2007;37:1-332.
*[8] Little MP. Ionising radiation in the workplace. BMJ 2015;351:h5405.
*[9] Kruszewski M, Wojewódzka M, Iwanenko T, Collins AR, Szumiel I. Application of the comet assay for monitoring DNA damage in workers exposed to chronic low-dose irradiation. II. Base damage. Mutat Res 1998;416:37-57.
*[10] Alavi, Seyedeh Shohreh et al. Medical radiation workers’ knowledge, attitude, and practice to protect themselves against ionizing radiation in Tehran Province, Iran. Journal of education and health promotion vol. 6 58. 5 Jun. 2017, doi:10.4103/jehp.jehp_126_15
*[11] World Health Organization. Global Initiative on Radiation Safety in Healthcare Settings: Technical Meeting Report. Geneva: World Health Organization. 2008. p. 4.
*[12] Eze CU, Abonyi LC, Njoku J, Irurhe NK, Olowu O. Assessment of radiation protection practices among radiographers in Lagos, Nigeria. Niger Med J 2013;54:386-91.
*[13] Bonassi S, Forni A, Bigatti P, Canevarollo N, De Ferrari M, Lando C, et al. Chromosome aberrations in hospital workers: Evidence from surveillance studies in Italy (1963-1993). Am J Ind Med 1997;31:353-60.
*[14] Limacher MC, Douglas PS, Germano G, Laskey WK, Lindsay BD, McKetty MH, et al. ACC expert consensus document. Radiation safety in the practice of cardiology. American College of Cardiology. J Am Coll Cardiol 1998;31:892-913.
*[15] Flôr R, Gelbcke F. Radiation protection and the attitude of nursing staff in a cardiac catheterization laboratory. Texto & Contexto Enferm agem 2013;2:416-22.
*[16] Anim-Sampong S, Opoku SY, Addo P, Botwe BO. Nurses knowledge of ionizing radiation and radiation protection during mobile radiodiagnostic examinations. Educ Res 2015;6:39-49.
*[17] Paolicchi F, Miniati F, Bastiani L, Faggioni L, Ciaramella A, Creonti I, et al. Assessment of radiation protection awareness and knowledge about radiological examination doses among Italian radiographers. Insights Imaging 2016;7(2):233-42.
*[18] Rassin M, Granat P, Berger M, Silner D. Attitude and knowledge of physicians and nurses about ionizing radiation. J Radiol Nurs 2005;24:26-30.
@@ pdf sayfa sayısı 106 @@
*[1] UNSCEAR (United Nations Scientific Committee on the Effect of Atomic radiation) United Nations General Assembly Vol. 1 Annex B, United Nations, New York, 2000
*[2] Duong, V., H., Nguyen, T., D., Hegedűs, M., et al. Assessment of 232Th, 226Ra, 137Cs, and 40 K concentrations and annual effective dose due to the consumption of Vietnamese fresh milk, J Radioanal Nucl Chem, 328, 1399–1404, 2021 https://doi.org/10.1007/ s10967-021-07643-w
*[3] Pöschl, M., Nollet, L., M., L. Radionuclide concentrations in food and the environment, CRC Press, Taylor & Francis Group, USA, 2007
*[4] Canbazoğlu, C., Doğru, M. A preliminary study on 226Ra, 232Th, 40K and 137Cs activity concentrations in vegetables and fruits frequently consumed by inhabitants of Elazığ Region, Turkey, J Radioanal Nucl Chem, Vol. 295, 1245–1249, 2013 https://doi.org/10.1007/s10967-012-1995-4
*[5] Çetinkaya, H., Manisa, K., Işık, U. Radioactivity Content of Building Materials Used in Kutahya Province, Turkey, Radiation Protection Dosimetry, 198(3): 167–174, 2022, https://doi.org/10.1093/rpd/ncac012
*[6] Jodłowski, P. Self-absorption correction in gamma-ray spectrometry of environmental samples – an overview of methods and correction values obtained for the selected geometries, Nukleonika, 51(2): 21-25, 2006
*[7] Knoll, G. F. Radiation Detection and Measurements, New York, NY: John Wiley and Sons, ISBN: 0-471-07338-5, 2000
*[8] ICRP, (International Commission on Radiological Protection). Age-dependent doses to members of the public from intake of radionuclides, ICRP Publication 119, 2012
@@ pdf sayfa sayısı 115 @@
*[1] Guo, J., Zhao, X., Lu, Z., Shi, P., Tian, Y., Chen, Y., Yan, S., Bai, L., Harder, M. High exchange-bias blocking temperature in an ultrathin amorphous antiferromagnet system, Physical Review B, Vol. 104, Issue 10, Pages L100401, 2021, https://doi.org/10.1103/PhysRevB.104.L100401
*[2] Pişkin, H., Akdoğan, N. Interface-induced enhancement of sensitivity in NiFe/Pt/IrMnbased planar hall sensors with nanoTesla resolution, Sensors and Actuators A: Physical, Vol. 292, Issue, Pages 24-29, 2019, https://doi.org/10.1016/j.sna.2019.04.003
*[3] Meiklejohn, W. H., Bean, C. P. New Magnetic Anisotropy, Physical Review, Vol. 102, Issue 5, Pages 1413-1414, 1956, https://doi.org/10.1103/PhysRev.102.1413
*[4] Zhang, J., Yang, J., Causer, G. L., Shi, J., Klose, F., Huang, J.-K., Tseng, A., Wang, D., Zu, X., Qiao, L., Pham, A., Li, S. Realization of exchange bias control with manipulation of interfacial frustration in magnetic complex oxide heterostructures, Physical Review B, Vol. 104, Issue 17, Pages 174444, 2021, https://doi.org/10.1103/PhysRevB.104.174444
*[5] Öztürk, M., Demirci, E., Erkovan, M., Öztürk, O., Akdoğan, N. Coexistence of perpendicular and in-plane exchange bias using a single ferromagnetic layer in Pt/Co/Cr/CoO thin film, EPL, Vol. 114, Issue 1, Pages 17008, 2016, https://doi.org/10.1209/0295-5075/114/17008
*[6] Fang, B., San Jose, L. S. T., Chen, A. T., Li, Y., Zheng, D. X., Ma, Y. C., Algaidi, H., Liu, K., Finocchio, G., Zhang, X. X. Electrical Manipulation of Exchange Bias in an Antiferromagnet/Ferromagnet-Based Device via Spin-Orbit Torque, Advanced Functional Materials, Vol. 32, Issue 26, Pages, 2022, https://doi.org/10.1002/adfm.202112406
*[7] Demirci, E., Rojas, J. d., Quintana, A., Fina, I., Menéndez, E., Sort, J. Voltage-driven strain-mediated modulation of exchange bias in Ir20Mn80/Fe80Ga20/Ta/(011)-oriented PMN32PT heterostructures, Applied Physics Letters, Vol. 120, Issue 14, Pages 142406, 2022, https://doi.org/10.1063/5.0091231
*[8] Öztürk, M., Demirci, E. Manipulating the magnetic and transport properties by CuIr thickness in CoFeB/CuIr/IrMn multilayers, Journal of Physics D: Applied Physics, Vol. 55, Issue 44, Pages 445002, 2022, https://doi.org/10.1088/1361-6463/ac8ebb
*[9] Elzwawy, A., Piskin, H., Akdoğan, N., Volmer, M., Reiss, G., Marnitz, L., Moskaltsova, A., Gurel, O., Schmalhorst, J. Current trends in planar Hall effect sensors: evolution, optimization, and applications, Journal of Physics D: Applied Physics, Vol., Issue, Pages, 2021, https://doi.org/10.1088/1361-6463/abfbfb
*[10] Öztürk, M. Double Hysteresis Loop and Loop Asymmetry in Perpendicularly Exchange-Biased Pt/Co/Pt/IrMn Thin Films, Acta Physica Polenica A, Vol. 140, Issue 1, Pages 20-26, 2021, https://doi.org/10.12693/APhysPolA.140.20
*[11] Chen, J. Y., Thiyagarajah, N., Xu, H. J., Coey, J. M. D. Perpendicular exchange bias effect in sputter-deposited CoFe/IrMn bilayers, Applied Physics Letters, Vol. 104, Issue 15, Pages 152405, 2014, https://doi.org/10.1063/1.4871711
@@ pdf sayfa sayısı 120 @@
*[1] Hillson, S., 2005. Teeth, Cambridge Manuals in Archaeology, Cambridge University Press.
*[2] IAEA, (IAEA-TECDOC-1331), “Use of electron paramagnetic resonance dosimetry with tooth enamel for retrospective dose assessment”, Austria, 2002.
*[3] Fattibene, P., Callens, F., “EPR Dosimetry with Tooth Enamel: A Review”, Applied Radiation and Isotopes, Vol. 68, Issue 11, Pages 2033–2116, 2010.
*[4] Mlakar, N., Pavlica, Z., Petelin, M., Strancar, J., Zrimsek, P., Pavlic, A., “Animal andhuman dentin microstructure and elemental composition”, Central European Journal of Medicine, Vol. 9, Issue 3, Pages 468-476, 2014.
*[5] Baffa, O., Kinoshita, A., Abrego, F.C., Silva, N.A., “ESR and NMR dosimetry, Epr in the 21st Century: Basics and Applications to Material, Life and Earth Sciences, Pages 614-623, 2002.
*[6] De, T., Romanyukha, A., Trompier, F., Pass, B., Misra, P., “Feasibility of Q-Band EPR Dosimetry in Biopsy Samples of Dental Enamel, Dentine and Bone”, Applied Magnetic Resonance, Vol. 44, Pages 375-387, 2013.
*[7] Azevedo, R.L., Asfora, V.K., Mützenberg, D.S., Cisneiros, D., Sullasi, H.L., Kinoshita, A.M., Guzzo, P.L., Skinner, A.R., Baffa, O., Pessis, A.M., Khoury, H.J., “ESR dating of megafauna enamel teeth from Lagoa Uri de Cima Archaeological Site (Pernambuco, Northeastern Brazil)”, Quaternary International, Vol. 556, Pages 38-48, 2020.
*[8] Bachmann, L., Diebolder, R., Hibst, R., Zazell, D.M., “Infrared Absorption Bands of Enamel and Dentin Tissues from Human and Bovine Teeth”, Applied Spectroscopy Reviews, Vol. 38, Issue 1, Pages 1-14, 2003.
*[9] Nanci A., “Ten Cate’s Oral Histology: Development, Structure and Function”, 6th ed.,St. Louis, Mosby, 2003.
*[10] Grün, R., Aubert, M., Hellstrom, J., Duval, M., The challenge of direct dating old human fossils, Quat. Int., Vol. 223–224, Pages 87–93, 2010.
*[11] Duval, M., Grün, R., Pares, J.M., Martin-Frances, L., Campana, I., Rosell, J., Shao, Q., Arsuaga, J.J., Carbonell, E., Castro, J.M.B.D., The first direct ESR dating of a hominin tooth from Atapuerca Gran Dolina TD-6 (Spain) supports the antiquity of Homo antecessor, Quaternary Geochronology, Vol. 47, Pages 120–137, 2018.
*[12] Ikeya, M., New Applications of ESR-Dating, Dosimetry and Microscopy, 2nd Edition,World Scientific Publication, Singapore, 1993.
@@ pdf sayfa sayısı 129 @@
*[1] Ergül H.A., Topcuoğlu S , Telli B. ve Terzi M., Deniz radyoekolojisinde sediment tuzağı (sediemnt trap) çalışmalarının önemi ve yapılan araştırmalar, X. Ulusal Nükleer Bilimler ve Teknolojileri Kongresi, 313-319s, 2009
*[2] Müllenhoff, M., Handl, M., Knipping, M. and Brückner H., The evolution of Lake Bafa (Western Turkey), Sedimentological, microfaunal and palynological results Coastline Reports, Pages 55-66, 2004
*[3] Wilford D. Gardner, Sediment trap dynamics and calibration: a laboratory evaluation, Journal of Marine Research, Volume 38, 1980
*[4] IAEA, 210Po and 210Pb in Marine Ecosystem of Aegean Sea Turkish Coast, IAEA- Research Contract No: 302-K4.00.24- TUR-12641, B5-TUR-31834. 2006
*[5] Flynn, W.W., The Determination of low levels of Polonium-210 in environmental materials, Anal. Chim. Acta., 43, Pages 221-227, 1968
*[6] Uğur, A. ve Yener, G., Determination of Lead-210 and Polonium-210 in Marine Environment, New Techniques for the Detection of Nuclear and Radioactive Agents, “NATO Advanced Training Course”, Muğla, Turkey, May 26-30, Program and Abstracts, 2008
@@ pdf sayfa sayısı 137,138 @@
*[1] W. F. Smith, Foundations of Materials Science and Engineering, McGraw-Hill Education, 2003.
*[2] D. Kocabağ, CAM Kimyası, Özellikleri, Uygulaması, İstanbul: Birsen Yayınevi, 2002.
*[3] C. Losq, M. R. Cicconi, G. N. Greaves & D. R. Neuville, Silicate Glasses, Springer Handbook of Glass, Springer Cham, 2019.
*[4] K.A. Matori, M.H.M. Zaid, H.A.A. Sidek, M.K. Halimah, Z.A. Wahab and M.G.M. Sabri, Influence of ZnO on the ultrasonic velocity and elastic moduli of soda lime silicate glasses, International Journal of Physical Sciences, pp. 2212-2216, 2010.
*[5] M. F. Syazwan MohdShofri, M. H. Mohd Zaid, R. A. Abdul Wahab, K. A. Matori, S. Hj. AbAziz, Y. W. Fen, The effect of boron substitution on the glass-forming ability, phase transformation and optical performance of zinc-boro-soda-lime-silicate glasses, Journal of Materials Research and Technology, pp. 6987-6993, 2020.
*[6] R. Hand, D. Tadjiev, Mechanical properties of silicate glasses as a function of composition, Journal of Non-Crystalline Solids, p. 2417–2423, 2010.
*[7] S. Karlsson, Compositional Effects on Indentation Mechanical Properties of Chemically Strengthened TiO2-Doped Soda Lime Silicate Glasses, Materials, p. 577, 2022.
*[8] M. Fandzloch, W. Bodylska, B. Barszcz, J. Trzcińska-Wencel, K. Roszek, P. Golińska, A. Lukowiak, Effect of ZnO on sol–gel glass properties toward (bio)application, Polyhedron, p. 115952, 2022.
*[9] S. Laila, S.N. Supardan, A.K. Yahya, Effect of ZnO addition and concurrent reduction of V2O5 on network formation and elastic properties of lead vanadate (55–x)V2O5- 45PbO–(x)ZnO glass system, Journal of Non-Crystalline Solids, pp. 14-22, 2013.
*[10] N.S. Hussain, Y.P. Reddy, S. Buddhudu, Emission properties of Tb3+-doped zinc boro-silicate glasses, Materials Letters, pp. 303-308, 2001.
*[11] R. K. Chand, B.K.Sudhakar, G.Ravikumar, V.Gayathri, P.Devikaa, T.Vennela, G. S. Rao, Ch.S. Rao, Influence of multi valent states of vanadium ions in ZnO doped novel calcium fluoro phosphate bio glasses, Journal of the Mechanical Behavior of Biomedical Materials, p. 105230, 2022.
*[12] R. Sindhu, P. Binod, A. Pandey, Chapter 17 - Microbial Poly-3-Hydroxybutyrate and Related Copolymers, Industrial Biorefineries & White Biotechnology, pp. 575-605, 2015.
*[13] K. Torres-Rivero, J. Bastos-Arrieta, N. Fiol, A. Florido, Metal and metal oxide nanoparticles: An integrated perspective of the green synthesis methods by natural products and waste valorization: applications and challenges, in Biosynthesized Nanomaterials, Cambridge, ELSEVIER, 2021, pp. 433-469.
*[14] S. Thomas, R. Thomas, A. Zachariah and R. Kumar, Spectroscopic Methods for Nanomaterials, in Fourier transforminfrared spectroscopy, ELSEVIER, 2017, pp. 72-93.
*[15] N. Effendy, Z. A. Wahab, S. H. Abdul Aziz, K. A. Matori, M. H. M. Zaid and S. S. A. Rashid, Characterization and optical properties of erbium oxide doped ZnO–SLS glass for potential optical and optoelectronic materials, Materials Express, pp. 59-65, 2017.
*[16] S. A. A. Wahab, K. A. Matori, S. H. A. Aziz and M. M. A. K. Mohd Hafiz Mohd Zaid, Effect of ZnO on the phase transformation and optical properties of silicate glass frits using rice husk ash as a SiO2 source, Journal of Materials Research and Technology, pp. 11013-11021, 2020.
*[17] A. A.-N. Ali Jabbar, K. A. Matori, A. Zakari and M. H. M. Zaid, Effect of MnO2 doped on physical, structure and optical properties of zinc silicate glasses from waste rice husk ash, Results in Physics, pp. 955-961, 2017.
*[18] A. J. A. Al-Nidawi, K. A. Matori, A. Zakaria and M. H. M. Zaid, Effect of MnO2 doped on physical, structure and optical properties of zinc silicate glasses from waste rice husk ash, Results in Physics, pp. 955-961, 2017.
*[19] W. Z. A. Effendy Nuraidayani, S. H. Abdul Aziz, K. A. Matori, M. H. M. Zaid ve S. S. A. Rashid, Characterization and optical properties of erbium oxide doped ZnO–SLS glass for potential optical and optoelectronic materials, Materials Express, pp. 59-65, 2017.
*[20] C. Hongtao, M. Zayat and D. Levy, Nanoparticle Synthesis of Willemite Doped with Cobalt Ions (Co0.05Zn1.95SiO4) by an Epoxide-Assisted Sol−Gel Method, Chemistry of Materials, pp. 5562-5566, 2005.
*[21] M. Kazancioglu, G. Tsilomelekis, R. Lehman and M. Hara, FTIR studies on plasticization of silicate glass with ionic liquids (conversion to silicate polymers), Journal of Non-Crystalline Solids, p. 120757, 2021.
*[22] M. F. Silva, Optical properties and crystallization behaviour of some MnO and/or, Journal of Non-Crystalline Solids, pp. 223-232, 2016.
*[23] V. Soares and E. Zanotto, Effect of P2O5 on the nonisothermal sinter-crystallization process of a Lithium Aluminum Silicate glass, International Journal of Applied Ceramic Technology, p. 948–955, 2016.
*[24] J. Zhu, T. Zheng, Y. Xin, M. Han, N. Ding and J. Lv, Influence of ZnO on the crystal phase and properties of lithium disilicate, Journal of Non-Crystalline Solids, pp. 43-49, 2017.
*[25] H. Darwish, S. Ibrahim and M. M. Gomaa , Electrical and physical properties of Na2O–CaO–MgO–SiO2 glass doped with NdF3, Journal of Materials Science: Materials in Electronics, p. 1028–1036, 2013.
*[26] Yuan-Zheng Yue, Characteristic temperatures of enthalpy relaxation in glass, Journal of Non-Crystalline Solids, pp. 1112-1118, 2008.
*[27] D. Shajan, P. Murugasen and S. Sagadevan, Analysis on the structural, spectroscopic, and dielectric properties of borate glass, Digest Journal of Nanomaterials and Biostructures, pp. 177-183, 2016.
*[28] A. K. Varshneya, Fundamentals of Inorganic Glasses, Academic Press, 1994.
*[29] A. M. Yousefi, H. Oudadesse, R. Akbarzadeh, E. Wers and A. L. Girot, Physical and biological characteristics of nanohydroxyapatite and bioactive glasses used for bone tissue engineering, Nanotechnology Reviews, 527-552, 2014.
@@ pdf sayfa sayısı 148,149 @@
*[1] Bilal Mehmood, M. I. Khan, Munawar Iqba, Asif Mahmood, Waheed Al-Masry, Structural and optical properties of Ti and Cu co-doped ZnO thin films for photovoltaic applications of dye sensitized solar cells, Int J Energy Res.2021;45:2445–2459.
<